
-- -w
__

~
_
~~~ 

- - - -
~~~~~~~~~~

-
~~ 

- --
— -- 

~~~~~~~~~~~~~ Z —~- 

—

a

33

= I I 6 n (~~~1)I 2
I I h I 2

~~ l X u 1f ( u ) d u  • 
-

= y n f 6 *(x~u)E[tyI
2
~~I X=u~f(u)du

**where 
~
6n { 16 n 1 

~~~~ 
is a 6-function sequence by Lenuna 2.1.4.

Thus, for k = 1,2 , . .  - ,p, we have

Y E [ I Y I
4
~~I X=X k J

tk,n

-‘0 a s n - ~~

since

= O(n~~
2
~~~~

’
~)

by assumption. Similar calculations yield

2+r~
I 

‘mn n ~~kfl
k,n 

n~~
2
~ 

/2
( f ( X ) )

2+n
[ 

~ 
t
~
a(x k)/f(xk)1

’2
k—i

0 as n -
~~ , and the proof is complete. [1

We now give a version of Theorem 2.4.2 for kernel-type 6-function

sequences, which may he compared with Schuster’s Theorem 2.4.1.

2.4.4 Theorem. Suppose to~(x)) = (c~~X(x/ e~)} is a 6-function sequence
of kernel type satisfying

- 2+rtU) JIK (u)I du < oo for some~~~> f l

-II i
~~ _ -. _________
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( i i )  f uK(u) du = 0 , f u2 K(u)du <

( iii) n~~~~ ’ nc~~~~0 asn~-

Suppose m(x) and f(x) have bounded, continuouS 1st 
and 2nd derivatives,

the distinct points x1,x2,.. - ,x1~ 
are continuity points of

s (x) and E[IYl 2~~tX x] and f(xk) > 0, k = 1,.. .,p. Then

~~~~~~~~~~~~~~~ 
converges in distribution to a multivariate normal

random vector with zero mean vector and identity covariance 
matrix, where

Z1~(x) = 
n (inn~~ 

- m(x) )

{a Cx) J K (u)du/f(X))
‘¼

Proof. We first verify that this 6-function sequence satisfies 
the

conditions of Theorem 2.4.2. Now

an 
= f 6~ (u) du = 

-l 
~ 
1(2(u) du <

for each n since C
n ~ 0, f K2(u)du < ~~~. Further,

un/n = (ne~)’f K
2(u) du — 0

since nc~ — by assumption . Similarly,

= f (6~(u)I
2
~~du = (lIcn)1+fl 

J iK( ~~ I
2
~~ 1~1 <

for each n , and

/ fl/ 2 1+fl12 (nc~ )~~~
2 

— 0 as n +

by assumption. Thus this type of 6-function sequence satisfies the

requiren~nts of Theorem 2.4.2, 
and since the remaining regularity condi-

tions of Theorem 2.4.2 are clearly satisfied under 
the present assumptions,
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we have that t Us ~
~~(x) 

~~:(X)/Ef~~~) I~ the 

hold5 When m~x) is repjac~~ bytha t express10 for
Hence, jf we Shoh

- 

~~(x) ) + ,
thee the cone Sb will 

~~~~~~ Now

(nc ) ½(~~() - m(x))

= 

~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

/ K((x U)/ )n(u)f

+ 
m(x) f(X ) - 

in -1

By Lejj~~ 2. ls  ~
) f(u)du J 

-

‘ the a rator fand the denomjn~ converges 
1th11~ the brackets above is I

½ 

. Thus(flc ) (g
~ (x) - m(x))

(nc,~f~o~-ç’~

Since flc 5 
—

Li

p.

1

~~~~~~~~~~~~~~~~~~~~~ ---~~~~~~~~~~~ --— - - ____________________________________
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2 .5  Asymptotic Distribution of I1i,.~

It  is eviden t that , since = m~/f is a sum of independent random

variables , we may apply the Lindeberg-Feller central limit theorem in

much the same w;i~’ as we did in Theorem 2 4 .2 to establish the asymptotic

nonnali tv of (i~~(x) - Ei~i (x))/Var[m]. We establi shed in ( i i )  of l.enina

2 .3 . 1  that

\‘a r [m ~~(x) J (ci~/ n ) s ( x ) f ( x )

b r  app ropriate  Points X.  h ence we have

V ai - [rn ] — (ci~/n) s(x ) / f ( x )  -

l~e therefore have the following theorems, which we state without proof ,

since the proofs follow those of Theorems 2.4,2 and 2.4.4 very closely.

The f i r s t  theorem concerns the asymptotic normality of for genera l

6-function sequences; the second for kernel type 6-sequences.

2.5.1 Theorem. Under the conditions of Theorem 2.4 2,

(~~ (x 1),.. - ~Wn
(Xj))) converges in dis tribution to a mul tivar iate norma l

random vector wi th  zero mean vector and identify covariance matrix , where

rn (x) - E (x) H
fl n 

Ln {(cz~/n)s(x)/f(x)}~

2 .5 2  Theorem. Under the conditions of Theorem 2.4.4, (w~ (x 1) . . . , w ~ (x1) ))

cop- urges in distribution to a multivariate normal random vector with zero

mean and identity covariance matrix , where

(nc n)
½(~~(x) - m(x))

~~(x) = -

{s(x) f K (u)du/f(x)}2

- - _ _ _ _ _ _ _ _ _ _ _ _ _  
L.
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2.6 Mean Integrated Square Error.

The mean integrated square error (N ISE) J~ of an estimator

f~ (x) = n ~i=l

of a density tT is defined as

= E f 
~~~~~ 

- f( x )) 2dx

where and f are assumed to he square integrahie . Watson and Leadbetter

(19b 3) show tha t .J~ is minimized for each n if 6~ is chosen to have a

Fourier transform 
~6 

expressible .is
“ I r.

k
f

t f l
2

~6 
(t) = 

2n (1/n) + ((n-l)/n)I~ f(t) j  r
where C~ f is the Four ier t rans form of f . (Fou r ier transforms of square
integrable functions have the usual interpretation here.) For the

regression estimation problem, Watson (1964) considers the error criterion

def ined by

J~ = E 
f ~~~~~~~~~~~~~~ -

where appropriate assumptions are made on 6~ and m to insure the finite-

ness of the integral. Watson states that J~ is minimized for each n if
is chosen so as to have Fourier transform

* — ~f~ttU

n n EY + ((n-l)/n)Iq ~~ (t)I

where is the Fourier transform of fm.

~~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~
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since
A

I IK’(u)Idu < -

-A

Thus , sinc e I I~~~I is a bounded sequence by assumption ,

I ~~~ 
- 

~2 ,n ’ I = Op
(a~c~~n /6 (log n) 312) ,

and the proof is complete . [1

We may write the sequence of Brownian bridges (Bn} of Theorem

3 .2 .3  as

(3 2 .2 3) B~ (x~y) = W~(x ,y) - xyW~(l , l)

0 � x,y � 1, where {W~} is a sequence of independent Wiener processes

on [0 ,ly (Révész (1976)). The next lemma shows that , for our purposes ,

the only significant part of (3.2.23) is W~ (x ,y) .

3.2.6 Lemma. If A4 holds , then

I I ~ 2 ,~ 
- 

~3,n U = O1,(c~).

Proof. By definition of 
~
‘
2,n and 

‘T’3,n~ 
we have

= Y3~~(t)I

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

since the Jacobian of the transformation I is f(x,y). Thus

- Y 3~~ I i

~ 
V ( l ,]•) I I ~g~1

½~ I
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sup ~~~
;

‘ 
.11 IyK(~j~) I f(x ,y)dxdy

u�t~l I Y I �a~ n

~ 
IW~(l4)I Ii g 1~ I l

sup ~-lf [ J  IyIf(x ,y)dy1IK(~~ )Idx
u�t�1

By A4,

h(x) = f ~y~f(x,y)dy

is a bounded function and ~~~ 
is a bounded sequence, so that for

some constant M we have

c~~~~I I Y  - Y  IIn 2 ,n 3,n

� I W (l , l) IMc ’ I IK (~~~)~dx

= I1~n
(l
~lflM I I K ( u ) I du

= 
~
)
~

(l) -

Thus 

I I Y 2 ,~~ 
- Y3~~I I = O~ (~~)

and the proof is complete. 0

3 .2.7 Lemma . Under the assumptions of Theorem 3.2.1,

I 
~4 ,n 

- 

~~~~~~~~~~ I 
= o~(c~) ½.

Proof. By definition ,

1 - — ---~~~~~ ------- —- ~à.-~_-—- --_ —j——— — ~~~~~~~~ - -- — —  — . _~~~~ - L .  — - __A~••~•A~~ ~~~~~
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(3.2.24) I’T’4 ,~(t) - Ysn (tfl

g~ (x)
= C

½
~ f { [  i

½ -1}K(
~
.
~
.)dW(x)

t

~~~~~~~~ ~~~~~~~ 

g~~~~~~
-

~~ 

]
½ -l)k(u) dW( t-uc )~

By using integration by parts and the assumptions that and K are
absolutely continuous, we may bound the integral on the extreme right
hand side of (3.2.24) with

~ A g ( t -E )~~(3 .2 .25)  
k~~~

2 f W(t-ue ) 
~~ { ~ 

n n  
~~ -l ]K(u) }dH

g~(t-Ac ~ ½+ C
2 K (A)W( t -Ac~){[ g~(t) 

I 1}~

+ ~~~
2K( A)W (t+Ac )~ [ 

t
~~~n) 

~

= J1,n (t) + J
2~~(t) 

+ J3,n (t) 
~

say . We will show that the supremum over [0,1] of each of these three
terms in O~ (c~ )~ thus completing the proof.

First of all , note

C 2II J~ I In ~~~~~~

- 
g~ (t-Ac )

~ K(A) sup I W(t- Ac )I sup c l I E  T~
Ost �l n 

~~~~ 
n g~(tJ

and
sup I W(t-A E~ )l  = 0 (1)

0�t�l p

_ _ _  _ _ _ _ _ _
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Now

-l g~(t-Ac~) ½sup~~ [ r~~ 1 -l

1 I [~~(t~~~ )] - [g~~(tU ½~
= sup c { }
0�t~1 I g~ (t) I

‘~ ~~~~~~~~~~~~~~~~~~~~~~~~ - [g~ ( t ) ]
l)~ -

By assumption , I I  g~~I I is a hounded sequence , and by the mean va lue

theorem,

- [g~(t)]¼ I

‘2~n I~~
(t
~~ n) 

- g~(t)I.lx ~(t,A)f~~

where x~(t,A) is between g~(t-Ac~) and g~(t). Applying the mean value

theorem to 
~ 

yields

~~(t~ A~n) - g~ (t)

= AE nkL~(t n (t ø A))  ,

where tn(t~
A) is between t - Ac~ and t .  Thus

C~
½ I Ij 2 11~l I

A I~~~~(t (t ,A))I
s K(A) sup I W ( t )  I ~- sup n

-Astsl 0�tslIx~(t .A)I

z OI,(l)

s ince g~ Is uniformly bounded and g~ is bounded away from zero , 1w

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~ A~~~ - . -~~~~~~‘~~~~~~~~ -~~~~~~~~~~ ~~ ~~



assumption, and thus

I I.i~~ I I .

c imi tar arg~uuent shows that

- ~~ (~~
½
)

~,fl ~ 
Ti

-
~ o we now cons i der

Carr’- ing out the different iat ion in the integrand ot .11 ~~
, we have

* ~.T (t )n l ,n
-\ g~(t—ui )

,~
‘ I ~~t -ut ,1) { K ’  (U) I ( 

~~~~~~~~ 
) a -lu du

A (t—ui ) -~~~ g’ (t Ui 1f W (t ~)k(u) ( ) ( duj

I~ 1~( t )  ~ .~~ (t )  I ’

‘;ay . Now the non —stochast ic teflfls in the I ntcgrand el C . are un i t  onnl~-

l-~nznded in the t a t-gumcnts and in n , hr assLiupt ion . We the re tore have

A
IC , 

~I I (~~ I IW (t—uc 1~) Idt ~ O~(i)

where is  ~4 constant - l:ot- ~l ,n ’ ai~p1y the same aT-gtunent USOL I il l  ct~lT

cidering 
~~~~~ 

to conclude that

S (t-u 1
SlIP * ~ 

_ __ _ _•~n _ 
~ 

— I -. C I I

where C a con ’-. t ant  I1~en 

~~~~~~~~~~~ - ~~~~~~~~~~~~ ~~~~- 
- 

- 
- —

~~~
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A

11c 1 n H ~Ci sup f IW(t-uc~)K’(u)uIdu
‘ 0~t�l -A

= O ~ (l) ,

and the proof is complete. 0

We now use the results proved thus far in showing that Y0,~ and

Y1 are sufficiently close to one another.,n

3.2.8 Lemma. Under the assumptions of Theorem 3.2.1,

- Y1~~I ) = 0~((log n)~~)

Proof. We must show that

sup {)[g(t))~~ - [g~(t)]~~))c~~ II yK(~~ )dZ~(x,y))}0�t�l IyI �an

= 0~((log ~)
½) •

By the preceding four lemmas and Theorem 3.2.2 ,

(log n) ½ E I I Y i ,n I I E A ( K ) )~~ - d~)

converges in distribution to some random variable, and is therefore a

O~(l) sequence. Since, by definition,

= 0((log n)½)

we have

I I Y 1,~ II 0~((log ~)
½)

and since h g 1 I I is a bounded sequence , we have

=1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -
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sup c ;½1 If  yK(
~j~

)dZn (x ,y) I0~t�l I g I �a~ n

= 0~ ((log ~~)
½
)

Thus it suffices to prove

(log n) I Ig~ 
- g ½~ I 0

as n ~ ~~~ . By the mean value theorem,

-
~~ -½ -3/2

- g = Ig~~~I I h ~ I

where h~ is between g~ and g. Since g
~ and g are bounded away f rom zero ,

I !h 312
1 I is a bounded sequence, and since, by A3 ,

(log n) IJg~-g II ~~0 -

the result is proved. C]

Since m (t) is an asymptotically unbiased estimator of m*(t)
m(t)f(t), it is natural to seek conditions under which Em~(t) may be

replaced by xn*(t) in Theorem 3.2.1. Define the process

(n€ )½ [m~(t) - m*(t)]
Y ’( t ) = ~ 

½n [s(t)f(t)J

Then we have the following corollary to Theorem 3.2.1.

3.2.9 Corollary . Suppose all the conditions of Theorem 3.2.1 hold

and in addition

= n~~ , 1/S < 6 < 1/2

K satisfies

- —  — - -~~~~~~~~ - - ~~~~~~~~~ ~~—-~~~~~~~~ - - -  --~~~ - —-A --~~~~~ - ~~~~~ — —_ ~~ - - -~~~~ ~~f~~ _



IuK u du = o ,

f u2K(u)du <

and the function

m*(t) = m(t)f(t) I yf( t ,y) dy

has bounded, continuous 1st and 2nd derivatives. Then the conclusion
of Theorem 3.2.1 holds, with Y~ replacing Y~.

Proof. Accordi ng to the remark at the beginning of the proof
of Theor em 3 .2 . 1 , it suffices to show

I I Y ’ - Y I I  = 0 ((log ~)½)n n p

But

- Y
~~I I  s ~~~~~~~~~~~~~~~~~~~~

By assimption,

I I~~~II <
~~~

and we know that, under the assumptions on m* and K ,

IIm * - Em~I I = O(c 2 )

Since

n 6 
, 6 > 1/5

then

c~ (nc~)~ (1og ~ )
½ (nc~ log ~)

½ , 0

and the proof is complete. 
0

_ _ _ _ _ _  _ _ _- _ _ _ _
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Based on this corollary, we may construc t a confidence band for m ( t ) ,

0 s t ~ 1 as follows. Using the asymptotic distribution, we have

~ supIY’(t)I
P1(26 log n)~ [ ½ 

- dnl < C(cz)} 1 -~~
[X(K)]

where

C( x )  = log 2 - log~1og (l-ct)I

I nverting the above expression in the usual way , we obtain as a (1-~)xl00%

confidence bond for m( t) :

(3.2.26) ~ (t) ± (ne ) ½ [ ~~~ ]½[ c(A) 
½ 

+
n (2 ô log n)

0 S t s 1.

3.3 Uniform Consistency of m~ and

We saw in Corollary 3.2.9 that the sequence of random’ variables

½ 
m*(t) - m(t)f(t)

(log n)~[(e~) sup 
n 

½ 
- d~]

Ost�1 [s(t)f(t)1

converges in distribution, and is thus a O~(l) 
sequence. We employ this

fact to show the uniform consistency of m~, and specify a rate of con-

vergence.

3.3.1 Lemma. Under the conditions of Corollary 3.2.9,

(3.3.1) sup (m~(t) 
- m(t)f(tfl = 0 [(log n)½ (nc~)~~1

Ostsl p

• Proof. By definition,

~~ = 0((log n)½
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and thus 
*

% (t) - m(t ) f ( t )
(nE )~~sup ½o�t�i [s(t)f(t)1

- 0~((log ~)
½) + O((log n)½)

= 0~((log ~)
½)

Now, using the assumption that g(t) = s(t)f(t) is bounded away from-
zero, the conclusion follows. 0

We now use the preceding lemma to show uniform consistency of
and~~~.

3.3.2 Theorem. Under the conditions of Corollary 3.2.9, we have

(3.3.2) ((inn 
- m ( (  = O

~[(1og fl)
½ (flE )½]

(3.3.3) 11% - m ( (  = O~[(log n)
¼(ne~)~~]

• Proof. Note that

I Iii1~ 
- m J ( � Hf~

’II II m ~ 
- m* I I

where

mtt) = f(t)m(t)

— By assumption, f is bounded away from zero on (0,1], and thus

• An application of Lemma 3.3.1 thus proves (3.3.2).

For (3.3.3), note
* *m f - f m

I - t - n nI n I - _ _ _ _ _ _  

---- - - -- - ---
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* * * *m f - m f  m f  - m fn n i~ + 1  n n  n
~~ 

I

say. Now

B = II ~n 
- m il = 0~[(log fl)

½ (fl~~y
½J

by (3.3.2). Further,
*

A s  j
~~~

- j f  t i ”~ ; 
f

jj

= ~f~~~~ 0p [(log n) ½ (ncn)~~ I

(Bickel and Rosenblatt (1973)). Since
*

I ~~~ ~ II m ~I I  • [inf If (t)IY ’

n O�t�l

and it is easily verified that I I m * I I  ~ II m *II , inf ( f  (t) (n
inf If(t)l > 0 , (3.3.3) follows.

Os t�l

_
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4. AN EXAMPLE , FURTHER RESEARCH

As we noted in the introductory chapter, if the density of X is

known, then either the estimator nt~ or i~ may be used to estimate the

regression function. Here we will s~minarize some results given in

Chapter 2 which relate to the relative performance of m~ and ii~ in this

case. We then present an example in which zn~ and are computed from —

a set of simulated data. 4

4.1 The Estimators m~ and i.~~~~~ -

\

We first note that , according to Theorem 2.3.4, if the density -

• function of X has , say , an interval for its support and is non-zero at

the endpoints of the interval, then m~ is a consistent estimator at the

endpoints, whereas ii~1.~ is not. The implication of this for finite sample

sizes is that iii~ is likely to ui splay a bias near the endpoints of the

X variable which m~ will not have.

According to Theorems 2.4.4 and 2.5.2, under appropriate conditions,

both %(x) and ñi~(x) have asymptotic normal distributions with mean

m(x) (for kernel type estimators) . However, the sequence of scaling

constants required for unit asymptotic variance differs for the two est-

imators; for %(x) it is (a2(x) fK
2(u)du/ (nc~)f 1(x) }½ and for i~~(x) it

• is {s(x) f K2(u) du/(nc~)f1(x) }½ . Since

• a2(x) = s(x) - m2(x) � s(x)

this indicates that iii~ may display more dispersion about in for finite

sample sizes than m~.

_ _  

A ,
- ______

________________ ~~~~~ 
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4.2 An Example.

In order to illustrate the behavior of the stimators in one specific

case, we have computed m~ and i~ for a set of artificial data. We have

also computed the approximate confidence intervals given by (3.2.26) for

in , based on ~~ The results of the computations are depicted in Figures

1-6, and we have also shown a scatterplot of the data and the true regres-

sion function on each figure. The data consists of n = 200 points

(X
~
,Y1) chosen independently with U(-3,2) and

Y. = X 3/ 3 + X 2 + .
1 1 1 1

where :~ is a standard normal variable independent of X1. Thus , for this

data 
- 

-

m(x) = x3/3 + x2 -

All calculations are for kernel type estimators with kernel function given

by a standard normal density function, truncated at + 3 and normalized

so as to be a probability density.

Figures 1 and 2 show the estimators m~ and iii~, respectively, with
.21 and Figures 3 and 4 show m~ and iii~ with slightly less smoothing,

n The previously discussed bias of is evident at the upper

endpoint on Figures 2 and 4, although m~ and do not differ by very

much at the lower endpoint. The difference in the asymptotic variances

of in~ and does not manifest itself in this example , although iii~ in

Figure 4 has a slightly more variable appearance than m~ in Figure 3.

Figures 5 and 6 show the approximate confidence bands given by

(3.2.26) for ~ - .1 , and c
11 

n~~
21 and c~ n 4, respectively. The

confidence bands (3.2.26) are asymptotically valid for any subinterval

of [-3,2]. In practice, however, one should consider these confidence

- -- - 
_  

- . - - -~~__ _ _

~ —~~~~~~~~ k L ~~~~~~~~~~ - ~~~~~~~~~~
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bands to be approximately valid only for intervals well within t3 c

support of X, since the earlier remarks on the endpoint bias of ii~
apply to the confidence bands also. These confidence bands were

calculated using the true conditional second m~~ nt

s(t) = 1 + [t 3/3 + t 2 ] 2

In practice, one would use an estimator of s(t), e.g. the consistent

estimator
l~~ 2Sn (t) = (ne~ ) 

~ 
Y.K((t-X

~
)/E

~
) -

i=l

4.3 Further Research.

Theorem 3.2.1 was proved for the process

(ne ) [%(t) - Em~(t)]

• [s(t)f(t)]

- 

• 
It should be possible to carry out a similar program for the process

½ _____— (ne~) [% (t) - 

Ef (t)
V (t) = 2 ½n [o ( t)/ f ( t ) )

A first step in such a proof might be to show the equivalence of V~ to

the process

V~(t) = 1f(t)/f~(t)]V~(t)

(in the sense of HV~ 
- = o~((log n)~~)) . Successive approximations,

as in Theorem 3.2.1 would lead eventually to the equivalence of ~~ to

the Wiener process of Theorem 3.2.2, and thus to the asymptotic distri-

bution of the maximun absolute deviation of V~.

_  

_  
I

L —--
~~~~~~~~— — _A ~~ t i~~
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We have not been able to carry out the technical details of the

proof of such a theorem. However, if it were to be proved, one applica-
tion would be a confidence band such as (3.2.26), but based on

instead of 1
~rL’ and therefore narrower since mn is asymptotically less

variable than i~in

~~~~~ ~~~~~ _ _

~~~~~~~~~~~~~~~

: 1JT.~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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